Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1328200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505591

RESUMO

In the field of medicine, decision support systems play a crucial role by harnessing cutting-edge technology and data analysis to assist doctors in disease diagnosis and treatment. Leukemia is a malignancy that emerges from the uncontrolled growth of immature white blood cells within the human body. An accurate and prompt diagnosis of leukemia is desired due to its swift progression to distant parts of the body. Acute lymphoblastic leukemia (ALL) is an aggressive type of leukemia that affects both children and adults. Computer vision-based identification of leukemia is challenging due to structural irregularities and morphological similarities of blood entities. Deep neural networks have shown promise in extracting valuable information from image datasets, but they have high computational costs due to their extensive feature sets. This work presents an efficient pipeline for binary and subtype classification of acute lymphoblastic leukemia. The proposed method first unveils a novel neighborhood pixel transformation method using differential evolution to improve the clarity and discriminability of blood cell images for better analysis. Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. These optimized features subsequently empower multiple classifiers, potentially capturing diverse perspectives and amplifying classification accuracy. The proposed pipeline is validated on publicly available standard datasets of ALL images. For binary classification, the best average accuracy of 98.1% is achieved with 98.1% sensitivity and 98% precision. For ALL subtype classifications, the best accuracy of 98.14% was attained with 78.5% sensitivity and 98% precision. The proposed feature selection method shows a better convergence behavior as compared to classical population-based meta-heuristics. The suggested solution also demonstrates comparable or better performance in comparison to several existing techniques.

2.
Diagnostics (Basel) ; 13(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835807

RESUMO

Cancer is one of the leading significant causes of illness and chronic disease worldwide. Skin cancer, particularly melanoma, is becoming a severe health problem due to its rising prevalence. The considerable death rate linked with melanoma requires early detection to receive immediate and successful treatment. Lesion detection and classification are more challenging due to many forms of artifacts such as hairs, noise, and irregularity of lesion shape, color, irrelevant features, and textures. In this work, we proposed a deep-learning architecture for classifying multiclass skin cancer and melanoma detection. The proposed architecture consists of four core steps: image preprocessing, feature extraction and fusion, feature selection, and classification. A novel contrast enhancement technique is proposed based on the image luminance information. After that, two pre-trained deep models, DarkNet-53 and DensNet-201, are modified in terms of a residual block at the end and trained through transfer learning. In the learning process, the Genetic algorithm is applied to select hyperparameters. The resultant features are fused using a two-step approach named serial-harmonic mean. This step increases the accuracy of the correct classification, but some irrelevant information is also observed. Therefore, an algorithm is developed to select the best features called marine predator optimization (MPA) controlled Reyni Entropy. The selected features are finally classified using machine learning classifiers for the final classification. Two datasets, ISIC2018 and ISIC2019, have been selected for the experimental process. On these datasets, the obtained maximum accuracy of 85.4% and 98.80%, respectively. To prove the effectiveness of the proposed methods, a detailed comparison is conducted with several recent techniques and shows the proposed framework outperforms.

3.
Diagnostics (Basel) ; 13(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37761236

RESUMO

Background: Using artificial intelligence (AI) with the concept of a deep learning-based automated computer-aided diagnosis (CAD) system has shown improved performance for skin lesion classification. Although deep convolutional neural networks (DCNNs) have significantly improved many image classification tasks, it is still difficult to accurately classify skin lesions because of a lack of training data, inter-class similarity, intra-class variation, and the inability to concentrate on semantically significant lesion parts. Innovations: To address these issues, we proposed an automated deep learning and best feature selection framework for multiclass skin lesion classification in dermoscopy images. The proposed framework performs a preprocessing step at the initial step for contrast enhancement using a new technique that is based on dark channel haze and top-bottom filtering. Three pre-trained deep learning models are fine-tuned in the next step and trained using the transfer learning concept. In the fine-tuning process, we added and removed a few additional layers to lessen the parameters and later selected the hyperparameters using a genetic algorithm (GA) instead of manual assignment. The purpose of hyperparameter selection using GA is to improve the learning performance. After that, the deeper layer is selected for each network and deep features are extracted. The extracted deep features are fused using a novel serial correlation-based approach. This technique reduces the feature vector length to the serial-based approach, but there is little redundant information. We proposed an improved anti-Lion optimization algorithm for the best feature selection to address this issue. The selected features are finally classified using machine learning algorithms. Main Results: The experimental process was conducted using two publicly available datasets, ISIC2018 and ISIC2019. Employing these datasets, we obtained an accuracy of 96.1 and 99.9%, respectively. Comparison was also conducted with state-of-the-art techniques and shows the proposed framework improved accuracy. Conclusions: The proposed framework successfully enhances the contrast of the cancer region. Moreover, the selection of hyperparameters using the automated techniques improved the learning process of the proposed framework. The proposed fusion and improved version of the selection process maintains the best accuracy and shorten the computational time.

4.
Diagnostics (Basel) ; 13(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37189485

RESUMO

We developed a framework to detect and grade knee RA using digital X-radiation images and used it to demonstrate the ability of deep learning approaches to detect knee RA using a consensus-based decision (CBD) grading system. The study aimed to evaluate the efficiency with which a deep learning approach based on artificial intelligence (AI) can find and determine the severity of knee RA in digital X-radiation images. The study comprised people over 50 years with RA symptoms, such as knee joint pain, stiffness, crepitus, and functional impairments. The digitized X-radiation images of the people were obtained from the BioGPS database repository. We used 3172 digital X-radiation images of the knee joint from an anterior-posterior perspective. The trained Faster-CRNN architecture was used to identify the knee joint space narrowing (JSN) area in digital X-radiation images and extract the features using ResNet-101 with domain adaptation. In addition, we employed another well-trained model (VGG16 with domain adaptation) for knee RA severity classification. Medical experts graded the X-radiation images of the knee joint using a consensus-based decision score. We trained the enhanced-region proposal network (ERPN) using this manually extracted knee area as the test dataset image. An X-radiation image was fed into the final model, and a consensus decision was used to grade the outcome. The presented model correctly identified the marginal knee JSN region with 98.97% of accuracy, with a total knee RA intensity classification accuracy of 99.10%, with a sensitivity of 97.3%, a specificity of 98.2%, a precision of 98.1%, and a dice score of 90.1% compared with other conventional models.

5.
Cancer Control ; 30: 10732748231169149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37078100

RESUMO

Artificial Intelligence (AI) is the subject of a challenge and attention in the field of oncology and raises many promises for preventive diagnosis, but also fears, some of which are based on highly speculative visions for the classification and detection of tumors. A brain tumor that is malignant is a life-threatening disorder. Glioblastoma is the most prevalent kind of adult brain cancer and the 1 with the poorest prognosis, with a median survival time of less than a year. The presence of O6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation, a particular genetic sequence seen in tumors, has been proven to be a positive prognostic indicator and a significant predictor of recurrence.This strong revival of interest in AI is modeled in particular to major technological advances which have significantly increased the performance of the predicted model for medical decision support. Establishing reliable forecasts remains a significant challenge for electronic health records (EHRs). By enhancing clinical practice, precision medicine promises to improve healthcare delivery. The goal is to produce improved prognosis, diagnosis, and therapy through evidence-based sub stratification of patients, transforming established clinical pathways to optimize care for each patient's individual requirements. The abundance of today's healthcare data, dubbed "big data," provides great resources for new knowledge discovery, potentially advancing precision treatment. The latter necessitates multidisciplinary initiatives that will use the knowledge, skills, and medical data of newly established organizations with diverse backgrounds and expertise.The aim of this paper is to use magnetic resonance imaging (MRI) images to train and evaluate your model to detect the presence of MGMT promoter methylation in this competition to predict the genetic subtype of glioblastoma based transfer learning. Our objective is to emphasize the basic problems in the developing disciplines of radiomics and radiogenomics, as well as to illustrate the computational challenges from the perspective of big data analytics.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Glioblastoma/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , Inteligência Artificial , Metilação de DNA , Glioma/tratamento farmacológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Prognóstico , Aprendizado de Máquina
6.
Diagnostics (Basel) ; 13(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37046503

RESUMO

The demand for the accurate and timely identification of melanoma as a major skin cancer type is increasing daily. Due to the advent of modern tools and computer vision techniques, it has become easier to perform analysis. Skin cancer classification and segmentation techniques require clear lesions segregated from the background for efficient results. Many studies resolve the matter partly. However, there exists plenty of room for new research in this field. Recently, many algorithms have been presented to preprocess skin lesions, aiding the segmentation algorithms to generate efficient outcomes. Nature-inspired algorithms and metaheuristics help to estimate the optimal parameter set in the search space. This research article proposes a hybrid metaheuristic preprocessor, BA-ABC, to improve the quality of images by enhancing their contrast and preserving the brightness. The statistical transformation function, which helps to improve the contrast, is based on a parameter set estimated through the proposed hybrid metaheuristic model for every image in the dataset. For experimentation purposes, we have utilised three publicly available datasets, ISIC-2016, 2017 and 2018. The efficacy of the presented model is validated through some state-of-the-art segmentation algorithms. The visual outcomes of the boundary estimation algorithms and performance matrix validate that the proposed model performs well. The proposed model improves the dice coefficient to 94.6% in the results.

7.
Sensors (Basel) ; 23(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36991714

RESUMO

BACKGROUND: Continuous surveillance helps people with diabetes live better lives. A wide range of technologies, including the Internet of Things (IoT), modern communications, and artificial intelligence (AI), can assist in lowering the expense of health services. Due to numerous communication systems, it is now possible to provide customized and distant healthcare. MAIN PROBLEM: Healthcare data grows daily, making storage and processing challenging. We provide intelligent healthcare structures for smart e-health apps to solve the aforesaid problem. The 5G network must offer advanced healthcare services to meet important requirements like large bandwidth and excellent energy efficacy. METHODOLOGY: This research suggested an intelligent system for diabetic patient tracking based on machine learning (ML). The architectural components comprised smartphones, sensors, and smart devices, to gather body dimensions. Then, the preprocessed data is normalized using the normalization procedure. To extract features, we use linear discriminant analysis (LDA). To establish a diagnosis, the intelligent system conducted data classification utilizing the suggested advanced-spatial-vector-based Random Forest (ASV-RF) in conjunction with particle swarm optimization (PSO). RESULTS: Compared to other techniques, the simulation's outcomes demonstrate that the suggested approach offers greater accuracy.


Assuntos
Diabetes Mellitus , Telemedicina , Humanos , Inteligência Artificial , Aprendizado de Máquina , Sistemas de Identificação de Pacientes
8.
Diagnostics (Basel) ; 13(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766640

RESUMO

Malaria is predominant in many subtropical nations with little health-monitoring infrastructure. To forecast malaria and condense the disease's impact on the population, time series prediction models are necessary. The conventional technique of detecting malaria disease is for certified technicians to examine blood smears visually for parasite-infected RBC (red blood cells) underneath a microscope. This procedure is ineffective, and the diagnosis depends on the individual performing the test and his/her experience. Automatic image identification systems based on machine learning have previously been used to diagnose malaria blood smears. However, so far, the practical performance has been insufficient. In this paper, we have made a performance analysis of deep learning algorithms in the diagnosis of malaria disease. We have used Neural Network models like CNN, MobileNetV2, and ResNet50 to perform this analysis. The dataset was extracted from the National Institutes of Health (NIH) website and consisted of 27,558 photos, including 13,780 parasitized cell images and 13,778 uninfected cell images. In conclusion, the MobileNetV2 model outperformed by achieving an accuracy rate of 97.06% for better disease detection. Also, other metrics like training and testing loss, precision, recall, fi-score, and ROC curve were calculated to validate the considered models.

9.
Diagnostics (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611393

RESUMO

BACKGROUND AND OBJECTIVE: In 2019, a corona virus disease (COVID-19) was detected in China that affected millions of people around the world. On 11 March 2020, the WHO declared this disease a pandemic. Currently, more than 200 countries in the world have been affected by this disease. The manual diagnosis of this disease using chest X-ray (CXR) images and magnetic resonance imaging (MRI) is time consuming and always requires an expert person; therefore, researchers introduced several computerized techniques using computer vision methods. The recent computerized techniques face some challenges, such as low contrast CTX images, the manual initialization of hyperparameters, and redundant features that mislead the classification accuracy. METHODS: In this paper, we proposed a novel framework for COVID-19 classification using deep Bayesian optimization and improved canonical correlation analysis (ICCA). In this proposed framework, we initially performed data augmentation for better training of the selected deep models. After that, two pre-trained deep models were employed (ResNet50 and InceptionV3) and trained using transfer learning. The hyperparameters of both models were initialized through Bayesian optimization. Both trained models were utilized for feature extractions and fused using an ICCA-based approach. The fused features were further optimized using an improved tree growth optimization algorithm that finally was classified using a neural network classifier. RESULTS: The experimental process was conducted on five publically available datasets and achieved an accuracy of 99.6, 98.5, 99.9, 99.5, and 100%. CONCLUSION: The comparison with recent methods and t-test-based analysis showed the significance of this proposed framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...